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Abstract: Drought is a major driver of vegetation activity in Spain, with significant 17 

impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the 18 

sensitivity of vegetation to drought conditions differs largely amongst vegetation types 19 

and climates. We used a high-resolution (1.1 km) spatial dataset of the Normalized 20 

Difference Vegetation Index (NDVI) for the whole Spain spanning the period from 21 

1981 to 2015, combined with a another newly developed dataset of the Standardized 22 

Precipitation Evapotranspiration Index (SPEI) to assess the sensitivity of vegetation 23 

types to drought across Spain. In specific, this study explores the drought time scales at 24 

which vegetation activity shows its highest response to drought severity at different 25 

moments of the year. Results demonstrate that –over large areas of Spain– vegetation 26 

activity is controlled largely by the interannual variability of drought. More than 90% of 27 

the land areas exhibited statistically significant positive correlations between the NDVI 28 

and the SPEI during dry summers (JJA). Nevertheless, there are some considerable 29 

spatio-temporal variations, which can be linked to differences in land cover and aridity 30 

conditions. In comparison to other climatic regions across Spain, results indicate that 31 
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vegetation types located in arid regions showed the strongest response to drought. 32 

Importantly, this study stresses that the time scale at which drought is assessed is a 33 

dominant factor in understanding the different responses of vegetation activity to 34 

drought.   35 

Key-words: Drought, NDVI, Vegetation activity, Climatic change, Spain.  36 

 37 

1. Introduction 38 

Drought is one of the major hydroclimatic hazards impacting land surface fluxes 39 

(Baldocchi et al., 2004; Fischer et al., 2007; Hirschi et al., 2011), vegetation respiration 40 

(Ciais et al., 2005), net primary production (Reichstein et al., 2007; Zhao and Running, 41 

2010), primary and secondary forest growth (Allen et al., 2015), and crop yield (Lobell 42 

et al., 2015; Asseng et al., 2015). Recently, numerous studies suggested an accelerated 43 

impact of drought on vegetation activity and forest mortality under different 44 

environmental conditions (Allen et al., 2010, 2015; Breshears et al., 2005) with a 45 

reduction in vegetation activity and higher rates of tree decay (e.g. Carnicer et al., 2011; 46 

Restaino et al., 2016). Nevertheless, a comprehensive assessment of the impacts of 47 

drought on vegetation activity is a challenging task. This is particularly because data on 48 

forest conditions and growth are partial, spatially sparse, and restricted to a small 49 

number of sampled forests (Grissino-Mayer and Fritts, 1997). Furthermore, the 50 

temporal resolution of forest data is insufficient to provide deep insights into the 51 

impacts of drought on vegetation activity [e.g. the official forest inventories (Jenkins et 52 

al., 2003)]. In addition to these challenges, the spatial and temporal data on crops are 53 

often limited, as they are mostly aggregated to administrative levels and provided at the 54 

annual scale, with minor information on vegetation activity across the different periods 55 

of the year (e.g. http://faostat.fao.org; https://quickstats.nass.usda.gov/#AF9A0104-56 

19EF-3BFE-90D2-C67700892F3E; last access on 1st October 2018). To handle these 57 
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limitations, numerous studies have alternatively employed the available remotely sensed 58 

data to assess the impacts of drought on vegetation activity (e.g. Ji and Peters, 2003; 59 

Wan et al., 2004; Rhee et al., 2010; Zhao et al., 2017). 60 

Several space-based products allow for quantifying vegetation conditions, given that 61 

both health and dry vegetation biomass respond dissimilarly to the electromagnetic 62 

radiation received in the visible and near-infrared parts of the vegetation spectrum 63 

(Knipling, 1970). As such, with the available spectral information recorded by sensors 64 

on board of satellite platforms, it is possible to calculate vegetation indices and 65 

accordingly assess vegetation activity (Tucker, 1979). In this context, several studies 66 

have already employed vegetation indices not only to develop drought-related metrics 67 

(e.g. Kogan, 1997; Mu et al., 2013), but to determine the impacts of drought on 68 

vegetation conditions as well (García et al., 2010; Vicente-Serrano et al., 2013; Zhang et 69 

al., 2017). An inspection of these studies reveals that drought impacts can be 70 

characterized using vegetation indices, albeit with a different response of vegetation 71 

dynamics as a function of a wide-range of factors, including –among others– vegetation 72 

type, bioclimatic conditions, and drought severity (Bhuiyan et al., 2006; Vicente-73 

Serrano, 2007; Quiring and Ganesh, 2010; Ivits et al., 2014). 74 

Given high interannual variability of precipitation, combined with the prevailing semi-75 

arid conditions across vast areas of the territory, Spain has suffered from frequent, 76 

intense and severe drought episodes during the past decades (Vicente-Serrano, 2006). 77 

Nonetheless, in the era of temperature rise, the observed increase in atmospheric 78 

evaporative demand (AED) during the last decades has accelerated the severity of 79 

droughts (Vicente-Serrano et al., 2014c), in comparison to the severity caused only by 80 

precipitation deficits (Vicente-Serrano et al., 2014a; González-Hidalgo et al., 2018). 81 

Over Spain, the hydrological and socioeconomic impacts of droughts are well-82 
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documented. Hydrologically, droughts are often associated with a decrease in 83 

streamflow and reservoir storages (Lorenzo-Lacruz et al., 2010; Lorenzo-Lacruz et al., 84 

2013). The impacts of drought can extend further to crops, leading to crop failure due to 85 

deficit in irrigation water (Iglesias et al., 2003), and even in arable non-irrigated lands 86 

(Austin et al., 1998; Páscoa et al., 2017). Over Spain, numerous investigations also 87 

highlighted the adverse impacts of drought on forest growth (e.g. Camarero et al., 2015; 88 

Gazol et al., 2018; Peña-Gallardo et al., 2018) and forest fires (Hill et al., 2008; Lasanta 89 

et al., 2017; Pausas, 2004; Pausas and Fernández-Muñoz, 2012).  90 

Albeit with these adverse drought-driven impacts, there is a lack of comprehensive 91 

studies that assess the impacts of drought on vegetation activity over the entire Spanish 92 

territory, with a satisfactorily temporal coverage. While numerous studies employed 93 

remotely sensed imagery and vegetation indices to analyze spatial and temporal 94 

variability and trends in vegetation activity over Spain (e.g. del Barrio et al., 2010; 95 

Julien et al., 2011; Stellmes et al., 2013), few attempts have been made to link the 96 

temporal dynamics of satellite-derived vegetation activity with climate variability and 97 

drought evolution (e.g. Vicente-Serrano et al., 2006; Udelhoven et al., 2009; Gouveia et 98 

al., 2012; Mühlbauer et al., 2016). An example is González-Alonso and Casanova 99 

(1997) who analyzed the spatial distribution of droughts in 1994 and 1995 over Spain, 100 

concluding that the most affected areas are semiarid regions. In their comparison of the 101 

MODIS Normalized Difference Vegetation Index (NDVI) data and the Standardized 102 

Precipitation Index (SPI) over Spain, García-Haro et al. (2014) indicated that the 103 

response of vegetation dynamics to climate variability is highly variable, according to 104 

the regional climate conditions, vegetation community, and growth stages. A similar 105 

finding was also confirmed by Vicente-Serrano (2007) and Contreras and Hunink 106 

(2015) in their assessment of the response of NDVI to drought in semiarid regions of 107 
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northeast and southeast Spain, respectively. Albeit with these comprehensive efforts, a 108 

detailed spatial assessment of the links between droughts and vegetation activity, which 109 

covers a long time period (decades), is highly desired for Spain to explore the 110 

differences in the response of vegetation activity to drought under different 111 

environments with various land cover and vegetation types. 112 

The overriding objectives of this study are: i) to determine the possible differences in 113 

the response of vegetation activity to drought over Spain, as a function of the different 114 

land cover types and climatic conditions; and ii) to explore the drought time scales at 115 

which vegetation activity highly responds to drought severity. An innovate aspect of 116 

this study is that it provides –for the first time– a comprehensive assessment of the 117 

response of vegetation activity to drought using a multidecadal (1981-2015) high spatial 118 

resolution (1.1 km) NDVI dataset over the study region.     119 

 120 

2. Data and methods 121 

2.1. Datasets 122 

2.1.1. NDVI data 123 

Globally, there are several NDVI datasets, which have been widely used to analyze 124 

NDVI variability and trends (e.g. Slayback et al., 2003; Herrmann et al., 2005; 125 

Anyamba and Tucker, 2005) and to assess the links between NDVI and climate 126 

variability and drought (e.g. Dardel et al., 2014; Vicente-Serrano et al., 2015; Gouveia 127 

et al., 2016). Amongst these global datasets, the most widely used are those derived 128 

from the Advanced Very High Resolution Radiometer (AVHRR) sensor on board of the 129 

NOAA satellites and those retrieved from the Moderate Resolution Imaging 130 

Spectroradiometer (MODIS) data. Both products have been widely employed to 131 

evaluate the possible influence of drought on vegetation dynamics in different regions 132 
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worldwide (e.g. Tucker et al., 2005; Gu et al., 2007; Sona et al., 2012; Pinzon and 133 

Tucker, 2014; Ma et al., 2015). While the Global Inventory Modeling and Mapping 134 

Studies (GIMMS) dataset from NOAA-AVHRR is available at a semi-monthly 135 

temporal resolution for the period from 1981 onwards (Tucker et al., 2005; Pinzon and 136 

Tucker, 2014), its spatial resolution is quite low (64 km
2
), which makes it difficult to 137 

capture the high spatial variability of vegetation cover over Spain. On the other hand, 138 

the NDVI dataset derived from MODIS dates back only to 2001 (Huete et al., 2002), 139 

which is insufficient to give insights into the long-term response of vegetation activity 140 

to drought. To overcome these spatial and temporal limitations, our decision was made 141 

to employ a recently developed high-resolution spatial NDVI dataset (Sp_1Km_NDVI), 142 

which is available at grid interval of 1.1 km, spanning the period from 1981 onwards. In 143 

accordance with GIMMS dataset, Sp_1Km_NDVI is available at a semi-monthly 144 

temporal resolution. This dataset has already been validated (Vicente-Serrano et al., 145 

2018), showing high performance in comparison to other available NDVI datasets. As 146 

such, it can be used -with confidence- to provide a multidecadal assessment of NDVI 147 

variability at high-spatial resolution, especially in areas of highly variable vegetation. 148 

Herein, it is noteworthy indicating that the data from the Sp_1Km_NDVI dataset was 149 

standardized (sNDVI), so that each series has an average equal to zero and a standard 150 

deviation equal to one. This procedure is motivated by the strong seasonality and spatial 151 

differences of vegetation activity over Spain. Following this procedure, the magnitudes 152 

of all NDVI time series are comparable over space and time. To accomplish this task, 153 

the data were fitted to a log-logistic distribution, which shows better skill in 154 

standardizing environmental variables, in comparison to other statistical distributions 155 

(Vicente-Serrano and Beguería, 2016).  156 
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In out attempt to limit the possible impact of changes in land cover on the dependency 157 

between drought and vegetation cover, we assumed that strong changes in NDVI can be 158 

seen as an indicator of changes in land cover. As such, those pixels with strong changes 159 

in NDVI during the study period were excluded from the analysis. These pixels were 160 

defined after an exploratory analysis in which we tested different thresholds. In specific, 161 

we excluded those pixels, which exhibited a decrease in the annual NDVI higher than 162 

0.05 units or an increase higher than 0.15 units between 1981 and 2015. The spatial 163 

distribution (not shown here) of these pixels concurs well with the areas identified in 164 

earlier studies over Spain (e.g. Lasanta and Vicente-Serrano, 2012; Vicente-Serrano et 165 

al., 2018). Furthermore, to avoid the possible influence of spatial autocorrelation, which 166 

can occur in areas with dominant positive changes in NDVI due to excessive rural 167 

exodus and natural revegetation processes (Hill et al., 2008; Vicente-Serrano et al., 168 

2018), we detrended the standardized NDVI series by means of a linear model. We then 169 

add the residuals of the linear trend to the average of NDVI magnitude over the study 170 

period. A similar approach has been adopted in several environmental studies (Olsen et 171 

al., 2013; Xulu et al., 2018; Zhang et al., 2016).  172 

 173 

2.1.2. Drought dataset 174 

Due to its complicated physiological strategies to cope with water stress, vegetation can 175 

show specific and even individual resistance and vulnerability to drought (Chaves et al., 176 

2003; Gazol et al., 2017; Gazol et al., 2018). As such, it is quite difficult to directly 177 

assess the impacts of drought on vegetation activity and forest growth. Alternatively, 178 

drought indices can be an appropriate tool to make this assessment, particularly with 179 

their calculation at multiple time scales. These time scales summarize the accumulated 180 

climatic conditions over different periods, which make drought indices closely related 181 
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to impact studies. Overall, to calculate drought indices, we employed data for a set of 182 

meteorological variables (i.e. precipitation, maximum and minimum air temperature, 183 

relative humidity, sunshine duration, and wind speed) from a recently developed 184 

gridded climatic dataset (Vicente-Serrano et al., 2017). This gridded dataset was 185 

developed using a dense network of quality-controlled and homogenized meteorological 186 

records. Data are available for the whole Spanish territory at a spatial resolution of 1.1 187 

km, which is consistent with the resolution of the NDVI dataset (section 2.1.1). Based 188 

on this gridded dataset, we computed the atmospheric evaporative demand (AED), 189 

reference evapotranspiration (ETo), and the Standardized Precipitation 190 

Evapotranspiration Index (SPEI). ETo was calculated using the physically based FAO-191 

56 Penman-Monteith equation (Allen et al., 1998). On the other hand, the SPEI was 192 

computed using precipitation and AED data (Vicente-Serrano et al., 2010). The SPEI is 193 

one of the most widely used drought indices and has thus been employed to quantify 194 

drought in a number of agricultural (e.g. Peña-Gallardo et al., 2018b), environmental 195 

(e.g. Vicente-Serrano et al., 2012; Bachmair et al., 2018), and socioeconomic 196 

applications (e.g. Bachmair et al., 2015; Stagge et al., 2015). The SPEI is advantageous 197 

compared to the Palmer Drought Severity Index (PDSI), as it is calculated at different 198 

time scales. In comparison to the Standardized Precipitation Index (SPI) (McKee et al., 199 

1993), the SPEI does not account only for precipitation, but it also considers the 200 

contribution of AED in drought evolution.  201 

In this work, the SPEI was calculated for the common 1- to 24-month time scales. The 202 

preference to use various time scales is motivated by our intention to characterize the 203 

response of different hydrological and environmental systems to drought It is well-204 

recognized that natural systems can show different responses to the time scales of 205 

drought (Vicente-Serrano et al., 2011, 2013). The time scale refers to the period in 206 
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which antecedent climate conditions are accumulated and it allows to adapt the drought 207 

index to the drought impacts since different hydrological and environmental systems 208 

show different responses sensitivities to the time scales of climate variability. This has 209 

been shown for hydrological systems (López-Moreno et al., 2013; Barker et al., 2016), 210 

but also ecological and agricultural systems show strong differences in the response to 211 

different time scales of climatic droughts (Pasho et al., 2011; Peña-Gallardo et al., 212 

2018b) given different biophysical conditions, but also the different strategies of 213 

vegetation types to cope with water stress (Chaves et al., 2003; McDowell et al., 2008), 214 

which are strongly variable in complex Mediterranean ecosystems. For instance, 215 

drought indices can be calculated on flexible time scales since it is not known a priori 216 

the most suitable period at which the NDVI is responding. Herein, we also detrended 217 

and standardized the semi-monthly SPEI data to be comparable with the de-trended 218 

sNDVI.  219 

Finally, we used the CORINE Land Cover for 2000 (https://land.copernicus.eu/pan-220 

european/corine-land-cover) to determine how land cover can impact the response of 221 

NDVI to drought severity. This map is representative of the main classes of land cover 222 

in the study domain over the period of investigation.  223 

 224 

2.2. Statistical analysis 225 

We used the Pearson’s r correlation coefficient to assess the relationship between the 226 

interannual variability of the sNDVI and SPEI. This association was evaluated 227 

independently for each semi-monthly period of the year. In specific, we calculated the 228 

correlation between the sNDVI for each semi-monthly period and SPEI recorded in the 229 

same period, at time-scales between 1- and 48-semi-months. Significant correlations 230 

were set at p < 0.05. Importantly, as the data of the sNDVI and SPEI were de-trended, 231 
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the possible impact of serial correlation on the correlation between sNDVI and SPEI is 232 

minimized, with no spurious correlation effects that can be expected from the co-233 

occurrence of the trends. Similarly, as the data were analyzed for each semi-monthly 234 

period independently, our results are free from any seasonality effect.  235 

Based on the correlation coefficients between the sNDVI and SPEI in the study domain, 236 

we determined the semi-monthly period of the year and the SPEI time scale at which the 237 

maximum correlation is found. This information was then used to determine the spatial 238 

and seasonal variations according to the different land cover categories. Finally, the 239 

average climate conditions over the study domain, including aridity (precipitation minus 240 

AED) and average temperature, were related to the time-scales at which the maximum 241 

correlation between the sNDVI and SPEI was found.  242 

 243 

3. Results 244 

3.1. General influence of drought on the sNDVI 245 

Figure 1 shows an example of the spatial distribution of the Pearson’s r correlation 246 

coefficients calculated between the sNDVI and the SPEI at the time-scales of 1-, 3-, 6- 247 

and 12-months (2-, 6-, 12- and 24-semi-monthly periods). Results are shown only for 248 

the second semi-monthly period of each month between April and July. The differential 249 

response of the NDVI to the different time scales of the SPEI is illustrated. As depicted, 250 

the 6-month time scale was more relevant to vegetation activity in large areas of 251 

Southwestern and Southeastern Spain during the second half of April. On the other 252 

hand, vegetation activity was more determined by the 12-month SPEI across the Ebro 253 

basin in northeastern Spain. This stresses the need of considering different drought time 254 

scales to know the climate cumulative period that mostly affects vegetation activity. The 255 

6-month and 12-month SPEI produced similar results during the second period of May, 256 
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while the 12-month time scale is more related to vegetation activity in June and July. 257 

The density plots (supplementary Figures 1 to 4) summarize the magnitude of 258 

correlations between the SPEI and sNDVI for Spain, as a function of the semi-monthly 259 

period as well as the SPEI time scale. It can be seen that correlations tend to be higher 260 

during the warm season (May to August), and at time scales between 6 and 24 months. 261 

Figure 2 summarizes the maximum correlation between the sNDVI and the SPEI, 262 

providing insights into the differential response of the NDVI to drought. It can be noted 263 

that there are clear seasonal and spatial differences in the response of sNDVI to the 264 

SPEI. The sNDVI is more related to the SPEI during the warm season (MJJA). In 265 

contrast, the response of the sNDVI to drought is less pronounced from September to 266 

April, albeit with some exceptions. One example is the response of vegetation to 267 

drought alongside the southeastern Mediterranean coastland, where the correlation 268 

between sNDVI and SPEI is almost high all the year around. Table 1 summarizes the 269 

percentage of the total area exhibiting significant or non-significant correlations over 270 

Spain during the different semi-monthly periods. Positive (lower sNDVI with drought) 271 

and statistically significant correlations are dominant across the entire territory, but with 272 

a seasonal component. In particular, a higher percentage of the territory shows positive 273 

and significant correlations during the warm season (MJJA). From mid of May to mid 274 

of September, more than 80% of the study domain show positive and significant 275 

correlations between the sNDVI and the SPEI. A similar finding is also found between 276 

the mid of June and the beginning of August. Figure 3 summarizes the average 277 

correlations between the SPEI and sNDVI. As illustrated, there is a gradual increase in 278 

the response of the sNDVI to the SPEI from the beginning of May to the end of July, 279 

when the maximum average correlation is recorded. In contrast, the correlations 280 

between the SPEI and sNDVI decrease progressively from August to December.  281 
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The response of the sNDVI to different times scales of the SPEI and seasons is quite 282 

complex. Figure 4 shows the spatial distribution of the SPEI time scale at which the 283 

maximum correlation was found for each one of the 24 semi-monthly periods of the 284 

year. It can be noted that there are considerable seasonal and spatial differences. 285 

Nonetheless, these differences are masked with the estimated average values of the 286 

SPEI time scale recorded for the semi-monthly periods (Figure 5) which are less 287 

variable (oscillating between 18 and 22 semi-monthly periods -9 to 11 months-) 288 

throughout the year. In general, the areas and periods with higher correlations are 289 

recorded at the time scales between 7 and 24 semi-months (3-12 months). This pattern 290 

is mostly recorded in the period between May and July (Supplementary Figure 5), in 291 

which the sNDVI variability is more sensitive to drought. Nevertheless, there are no 292 

general spatial patterns in the response of the NDVI to SPEI, indicating that there is a 293 

dominance of the maximum correlations associated with a certain SPEI time scale 294 

(Supplementary Figure 6). Interestingly, this , this pattern is not driven by the presence 295 

of different land cover types, given that the correlation coefficients between the sNDVI 296 

and SPEI are quite similar, irrespective of the land cover type (Supplementary Figures 7 297 

to 17).  298 

 299 

3.2. Land cover differences  300 

There are differences in the magnitude and seasonality of the Pearson’s r correlation 301 

coefficients among all land cover types. Figure 6 shows the average and standard error 302 

of the mean of the maximum Pearson’s r coefficients between the sNDVI and SPEI for 303 

the different land cover types and the 24 semi-monthly periods. The magnitudes of 304 

correlation vary considerably, as a function of land cover type, as well as the period of 305 

the year in which the highest correlations are recorded. The non-irrigated arable lands 306 
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show a peak of significant correlation between April and June. However, this 307 

correlation decreases towards the end of the year. The majority of the surface dominated 308 

by this land cover shows positive and significant correlations between May and 309 

September (Supplementary Table 1), with percentages almost close to 100%. On the 310 

contrary, irrigated lands do not show such a strong response to drought during the warm 311 

season. Even with the presence of a seasonal pattern, it is less pronounced than the one 312 

observed for non-irrigated arable lands. Overall, irrigated areas are characterized by 313 

positive and significant correlations between sNDVI and SPEI during summertime 314 

(Supplementary Table 2). Similarly, vineyards show a clear seasonal pattern, albeit with 315 

a peak of maximum correlations during the late summer (July-August) and early 316 

autumn (September-October) (Supplementary Table 3). On the other hand, olive groves 317 

show of the highest correlation between the sNDVI and SPEI during the second half of 318 

May and in October, suggesting a quasi bi-modal response of the NDVI to drought. 319 

This pattern is also revealed in the percentage of the surface area with significant 320 

correlations (Supplementary Table 4). In the same context, the areas of natural 321 

vegetation exhibit their maximum correlation between the sNDVI and SPEI during 322 

summer months. The highest correlations are found in July and August for the forest 323 

types, compared to earlier June for the natural grasslands and the areas of sclerophillous 324 

vegetation. On the other hand, the mixed forests tend to show lower correlations than 325 

broad-leaved and coniferous forests. A quick inspection of all these types of land cover 326 

indicates that the correlations between the sNDVI and SPEI are generally positive and 327 

significant during summer months (Supplementary Tables 5 to 11).  328 

Large differences across vegetation types were found for the SPEI time scales at which 329 

maximum correlations between sNDVI and the SPEI are found (Figure 7). For example, 330 

for non-irrigated arable lands, the maximum correlation between SPEI and sNDVI is 331 
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found for time scales between 11 and 21 semi-monthly periods. This indicates that 332 

crops in May-June (the period in which higher correlations are recorded) respond 333 

mostly to the climate conditions recorded between June and December of the preceding 334 

year. Irrigated lands show a clear seasonal pattern, as maximum correlations are 335 

recorded at time scales between 12 and 18 semi-monthly periods (i.e. 6 to 9 months), 336 

mainly between November and May. On the other hand, the maximum correlations 337 

between sNDVI and SPEI during summer are found for time scales between 25 and 28 338 

semi-monthly periods. Similar to irrigated lands, vineyards show a strong seasonality, 339 

responding to longer time-scales at the end of summertime. In contrast, natural 340 

vegetation areas show less seasonality to SPEI time scales, which mostly impact the 341 

interannual variability of sNDVI. The SPEI time scales, at which the maximum 342 

correlation is found between sNDVI and SPEI, vary from 20 semi-monthly periods 343 

during the warm season (MJJAS) to 30 semi-monthly periods during the cold season 344 

(ONDJFMA). This finding is evident for all forest types and areas of sclerophillous 345 

vegetation and mixed wood-scrub. The only exception corresponds to natural 346 

grasslands, which show a response to shorter SPEI time scales (i.e. 20 semi-monthly 347 

periods in winter and 15 in spring and early summer).  348 

 349 

3.3. Influence of average climatic conditions         350 

In addition to the impact of the time scale at which drought is quantified, the response 351 

of vegetation activity to drought can also be closely related to the prevailing climatic 352 

conditions. Figure 8 summarizes the spatial correlation between aridity (P-AED) and 353 

the maximum correlation between the sNDVI and SPEI. For most of the semi-monthly 354 

periods of the year aridity is negatively correlated with the maximum correlation 355 

between sNDVI and SPEI, indicating that vegetation activity in arid sites is more 356 
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responsive to drought variability. This correlation is more pronounced for the period 357 

between December and June. In contrast, this negative association becomes weaker and 358 

statistically non-significant during warmer months (e.g. July and August). Figure 9 359 

illustrates the spatial correlation between mean air temperature and the maximum 360 

correlation between the sNDVI and SPEI. Results demonstrate similar results to those 361 

found for aridity, with a general positive and significant correlation from March to June, 362 

followed by a non-significant and weak correlation during summer months.   363 

Nonetheless, these general patterns vary largely as a function of land cover type 364 

(Supplementary Figures 18 to 28). For example, in non-irrigated arable lands, there is 365 

strong negative correlation between aridity and the sNDVI/SPEI maximum correlation 366 

from March to May: a period that witnesses the peak of vegetation activity in this land 367 

cover type. This also coincides with the period of the highest average correlations 368 

between the sNDVI and SPEI. Taken together, this demonstrates that non-irrigated 369 

arable lands located in the most arid areas are more sensitive to drought variability than 370 

those located in humid regions. As opposed to non-irrigated arable lands, the 371 

correlations with aridity are found statistically non-significant in all periods of the year 372 

for irrigated lands, vineyards and olive groves. Nevertheless, for the different natural 373 

vegetation categories, the correlations are negative and statistically significant during 374 

large periods. The mixed agricultural/natural vegetation areas show a significant 375 

correlation between October and July, with stronger association at the beginning of 376 

summer season. Broadleaved and coniferous forests, scrubs, and pasture lands also 377 

show a negative relationship between the spatial patterns of the sNDVI/SPEI 378 

correlations and aridity.  379 

As depicted in Figure 9, the relationship between the sNDVI/SPEI correlation and air 380 

temperature shows that the response of vegetation activity to drought is modulated by 381 
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air temperature during springtime. This implies that warmer areas are those in which the 382 

sNDVI is more controlled by drought.  A contradictory pattern is found during warmer 383 

months, in which the role of air temperature in modulating the impact of drought on 384 

vegetation activity is minimized. The relationships between air temperature and the 385 

NDVI-SPEI correlation vary among the different land cover types (Supplementary 386 

Figures 29 to 39). For example, in non-irrigated arable lands, the positive and 387 

statistically significant correlation is found in the period from March to April, indicating 388 

that the response of the sNDVI to SPEI tends to coincide spatially with areas of warmer 389 

conditions. As observed for aridity, the relationship between the sNDVI and SPEI in 390 

irrigated lands is less associated with the spatial patterns of air temperature. A similar 391 

pattern is recorded for vineyards and olive groves. Nevertheless, the areas of natural 392 

vegetation show a clear relationship between air temperature and the sNDVI/SPEI 393 

correlations. In the mixed agriculture and natural vegetation areas, we found a 394 

statistically significant positive association between the sNDVI and SPEI from October 395 

to May. On the contrary, this association is less evident during summer months. This 396 

general association during springtime, combined with the lack of association during 397 

summertime, can also be seen for other natural vegetation types such as broad-leaved 398 

and coniferous forests, natural grasslands, sclerophillous vegetation and mixed wood-399 

scrubs. 400 

We also analyzed the dependency between climatic conditions (i.e. aridity and air 401 

temperature) and the SPEI time scale(s) at which the maximum correlation between the 402 

sNDVI and SPEI is recorded. Figure 10 shows the values of aridity corresponding to 403 

SPEI time scales at which the maximum correlation between the sNDVI and SPEI is 404 

found for each semi-monthly period. The different box-plots indicate complex patterns, 405 

which are quite difficult to interpret. Overall, less arid areas show stronger correlations 406 
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at longer time-scales (25-42 semi-monthly periods) during springtime. In the same 407 

context, the regions with maximum correlations at short time scales (1-6 months) tend 408 

to be located in less arid regions that record their maximum correlations at time scales 409 

between 7 and 24 semi-monthly periods. This suggests that the most arid areas mostly 410 

respond to the SPEI time scales between 6 and 12 months, compared to short (1-3 411 

months) or long (> 12 months) SPEI time-scales in more humid regions. In contrast, 412 

during summer season, the interannual variability of the sNDVI in the arid areas is 413 

mostly determined by the SPEI recorded at time scales higher than 6 months (12 semi-414 

monthly periods), while responding to short SPEI time scales (< 3 months) over the 415 

most humid regions.  416 

Again, this general pattern is highly dependent on the land cover type (Supplementary 417 

Figures 40 to 50). In the non-irrigated arable lands, there are no noticeable differences 418 

in aridity in response to the SPEI time scale that recorded the maximum correlation with 419 

the sNDVI. A similar finding is also found irrespective of the considered semi-monthly 420 

period. In the vineyards, we noted that the sNDVI responds to short SPEI time scales in 421 

areas characterized by lower aridity conditions during summer months. This pattern is 422 

less evident for olive groves. In contrast, we observed clear patterns for natural 423 

vegetation. In particular, those areas characterized by mixed agriculture and vegetation 424 

show high complexity during winter and spring, with no specific patterns in relation to 425 

the SPEI time-scales with maximum correlations with the sNDVI. In contrast, we found 426 

a clear pattern during warmer months (June to September), with stronger correlations at 427 

shorter time scales in the most humid areas and at longer SPEI time-scales (> 12 428 

months) over the most arid regions. The pattern is less pronounced in broad-leaved 429 

forests, although the response to short SPEI time scales seems to be more frequent in 430 

the less arid broad-leaved forests. On the other hand, in coniferous forests, 431 
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sclerophylous vegetation, and the transition wood-scrub, we noted a relationship 432 

between the aridity and the SPEI time-scales with maximum correlation with the 433 

sNDVI during summer months. Natural grassland areas show clear seasonal differences. 434 

In spring, the grasslands located in the most arid sites show higher correlation at short 435 

SPEI time scales, while they exhibit similar patterns (i.e. maximum correlations at short 436 

SPEI time scales under less arid conditions) to those of other natural vegetation areas 437 

during summer.  438 

Also, we found links between the spatial distribution of air temperature and the SPEI 439 

time scales at which maximum correlation between the sNDVI and SPEI is recorded 440 

(Figure 11). In early spring, short SPEI time scales dominate in warmer areas, compared 441 

to long SPEI time scales in colder regions. A contradictory pattern is observed from 442 

June to September, with a dominance of shorter SPEI time scales in colder areas and 443 

longer SPEI time scales in warmer regions. In terms of vegetation types, natural 444 

vegetation areas tend generally to reproduce similar pattern in comparison to cultivation 445 

types (Supplementary Figures 51 to 61). 446 

The spatial distribution of all land cover types, after excluding irrigated lands in which 447 

the anthropogenic factors dominate, is illustrated in Figure 12. Mixed forests are located 448 

in the most humid areas, while vineyards, olive groves, non-irrigated arable lands and 449 

the sclerophyllous natural vegetation are distributed in the most arid sites. Nevertheless, 450 

there is a gradient of these land cover types in terms of their response to drought, as 451 

those types located under more arid conditions show a stronger response of vegetation 452 

activity to drought than those located in humid environments. For example, the mixed 453 

forests show lower correlations than crop types and other vegetation areas. This may 454 

suggest that there is a linear relationship between climate aridity corresponding to each 455 

land cover and how vegetation activity will respond to drought. This pattern is more 456 
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evident during the different semi-monthly periods of the year, albeit with more 457 

differences during spring and autumn. In summer, these differences are much smaller 458 

between land cover categories, irrespective of aridity conditions. 459 

There are also differences in the average SPEI time scale at which the maximum 460 

sNDVI/SPEI correlation is obtained (Figure 13). However, these differences are 461 

complex, with noticeable seasonal differences in terms of the relationship between 462 

climate aridity and land cover types. In spring and late autumn, land cover types located 463 

in more arid conditions tend to respond to shorter SPEI time scales than those located in 464 

more humid areas. This pattern can be seen in late summer and early autumn, in which 465 

the most arid land cover types (e.g. vineyards and olive groves) tend to respond at 466 

longer SPEI time scales, compared to forest types (mostly the mixed forests), which are 467 

usually located under more humid conditions.         468 

   469 

4. Discussion and conclusions 470 

This study assesses the response of vegetation activity to drought in Spain using a high-471 

resolution (1.1 km) spatial NDVI dataset that dates back to 1981 (Vicente-Serrano et al., 472 

2018). Based on another high-resolution semi-monthly gridded climatic dataset, drought 473 

was quantified using the Standardized Precipitation Evapotranspiration Index (SPEI) at 474 

different time scales (Vicente-Serrano et al., 2017).  475 

Results demonstrate that vegetation activity over large parts of Spain is closely related 476 

to the interannual variability of drought. In summer more than 90% of the study domain 477 

show statistically significant positive correlations between the NDVI and SPEI. A 478 

similar response of the NDVI to drought is confirmed in earlier studies in different 479 

semi-arid and sub-humid regions worldwide, including Northeastern Brazil (e.g. 480 

Barbosa et al., 2006), the Sahel (e.g. Herrmann et al., 2005), Central Asia (e.g. Gessner 481 
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et al., 2013), Australia (e.g. De Keersmaecker et al., 2017) and California (e.g. Okin et 482 

al., 2018). Albeit with this generalized response, our results also show noticeable spatial 483 

and seasonal differences in this response. These differences can be linked to the time 484 

scale at which the drought is quantified, besides the impact of other dominant climatic 485 

conditions (e.g. air temperature and aridity).  486 

This study stresses that the response of vegetation activity to drought is more 487 

pronounced during the warm season (MJJAS), in which vast areas of the Spanish 488 

territory show statistically significant positive correlation between the sNDVI and SPEI. 489 

This seasonal pattern can be attributed to the phenology of vegetation under different 490 

land cover types. In the cold season, some areas, such as pastures and non-permanent 491 

broad leaf forests, do not have any vegetation activity. Other areas, with coniferous 492 

forests, shrubs and cereal crops, show a low vegetation activity. As such, irrespective of 493 

the recorded drought conditions, the response of vegetation to drought would be low 494 

during wintertime. This behaviour is also enhanced by the atmospheric evaporative 495 

demand (AED), which is generally low in winter in Spain (Vicente-Serrano et al., 496 

2014d), with a lower water demand of vegetation and accordingly low sensitivity to soil 497 

water availability. Austin et al. (1998) indicated that soil water recharge occurs mostly 498 

during winter months, given the low water consumption by vegetation. However, in 499 

spring, vegetation becomes more sensitive to drought due to temperature rise. 500 

Accordingly, the photosynthetic activity, which determines NDVI, is highly controlled 501 

by soil water availability (Myneni et al., 1995). In this study, the positive spatial 502 

relationship found between air temperature and the sNDVI/SPEI correlation reinforces 503 

this explanation. In spring, we found low correlations between the NDVI and SPEI, 504 

even in cold areas. In contrast, warmer air temperatures during summer months 505 

reinforce vegetation activity, but with some exceptions such as cereal cultivations, dry 506 
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pastures and shrubs, which record their maximum vegetation activity during spring. 507 

This would explain why the response of vegetation activity to the SPEI is stronger 508 

during summer in vast areas of Spain.  509 

Also, this study suggests clear seasonal differences in the response of the NDVI to 510 

drought, and in the magnitude of the correlation between the NDVI and the SPEI, as a 511 

function of the dominant land cover. These differences are confirmed at different spatial 512 

scales, ranging from regional and local (e.g. Ivits et al., 2014; Zhao et al., 2015; 513 

Gouveia et al., 2017; Yang et al., 2018) to global (e.g. Vicente-Serrano et al., 2013), 514 

Over Spain, the non-irrigated arable lands, natural grasslands and sclerophyllous 515 

vegetation show an earlier response to drought, mainly in late spring and early summer. 516 

This response is mainly linked to the vegetation phenology dominating in these land 517 

covers, which usually reach their maximum activity in late spring to avoid dryness and 518 

temperature rise during summer months. The root systems of herbaceous species are not 519 

very deep, so they depend on the water storage in the most superficial soil layers 520 

(Milich and Weiss, 1997), and they could not survive during the long and dry summer 521 

in which the surface soil layers are mostly depleted (Martínez-Fernández and Ceballos, 522 

2003). This would explain an earlier and stronger sensitivity to drought also showed in 523 

other world semiarid regions (Liu et al., 2017; Yang et al., 2018; Bailing et al., 2018). 524 

On the contrary, maximum correlations between the NDVI and the SPEI are recorded 525 

during summer months in the forests but also in wood cultivations like vineyards and 526 

olive groves. In this case, the maximum sensitivity to drought coincides with the 527 

maximum air temperature and atmospheric evaporative demand (Vicente-Serrano et al., 528 

2014d). This pattern would be indicative of a different adaptation strategy of trees in 529 

comparison to herbaceous vegetation, since whilst herbaceous cover would adapt to the 530 

summer dryness generating the seed bank before the summer (Peco et al., 1998; Russi et 531 
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al., 1992), the trees and shrubs would base their adaptation on deeper root systems, 532 

translating the drought sensitivity to the period of highest water demand and water 533 

limitation. 534 

In addition to the seasonal differences among land cover types, we have shown that in 535 

Spain herbaceous crops show a higher correlation between the NDVI and the SPEI than 536 

most of natural vegetation types (with the exception of the sclerophyllous vegetation). 537 

This behaviour could be explained by three different factors: i) a higher adaptation of 538 

natural vegetation to the characteristic climate of the region where drought is a frequent 539 

phenomenon (Vicente-Serrano, 2006); ii) the deeper root systems that allow shrubs and 540 

trees to obtain water from the deep soil; and iii) cultivated lands tend to be typically 541 

located in drier areas than natural vegetation. Different studies showed that the 542 

vegetation of dry environments tends to have a more intense response to drought than 543 

sub-humid and humid vegetation (Schultz and Halpert, 1995; Abrams et al., 1990; 544 

Nicholson et al., 1990; Herrmann et al., 2016). Vicente-Serrano et al. (2013) analysed 545 

the sensitivity of the NDVI in the different biomes at a global scale and found a spatial 546 

gradient in the sensitivity to drought, which was more important in arid and semiarid 547 

regions.  548 

In this study we have shown a control in the response of the NDVI to drought severity 549 

by the climatic aridity. Thus, there is a significant correlation between the spatial 550 

distribution of the climatic aridity and the sensitivity of the NDVI to drought, mostly in 551 

spring and autumn. This could be explained because in more humid environments the 552 

main limitation to vegetation growth is temperature and radiation rather than water, so 553 

not all the water available would be used by vegetation reflected in a water surplus as 554 

surface runoff. This characteristic would make the vegetation less sensitive to drought. 555 

Drought indices are relative metrics in comparison to the long term climate with the 556 
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purpose of making drought severity conditions comparable between areas of very 557 

different climate characteristics (Mukherjee et al., 2018). This means that in humid 558 

areas the corresponding absolute precipitation can be sufficient to cover the vegetation 559 

water needs although drought indices inform on below-of-the-average conditions. On 560 

the contrary, in arid regions a low value of a drought index is always representative of 561 

limited water availability, which would explain the closer relationship between the 562 

NDVI and the SPEI.  563 

Here we also explored if the general pattern observed in humid and semi-arid regions is 564 

also affected by the land cover, and found that the behaviour in the non-irrigated arable 565 

lands is the main reason to explain the global pattern. Herbaceous crops show that 566 

aridity levels have a clear control of the response of the NDVI to drought during the 567 

period of vegetation activity. Nevertheless, after the common harvest period (June) this 568 

control by aridity mostly disappears. This is also observed in the grasslands and in the 569 

sclerophyllous vegetation, and it could be explained by the low vegetation activity of 570 

the herbaceous and shrub species during the summer, given the phenological strategies 571 

to cope with water stress with the formation of the seeds before the period of dryness 572 

(Chaves et al., 2003). The limiting aridity conditions that characterises the regions in 573 

which these vegetation types grow would also contribute to explain this phenomenon. 574 

On the contrary, the forests, both broad-leaved and coniferous, also show a control by 575 

aridity in the relationship between the NDVI and the SPEI during the summer months 576 

since these land cover types show the peak of the vegetation activity during this season.  577 

In any case, it is also remarkable that the spatial pattern of the NDVI sensitivity to 578 

drought in forests is less controlled by aridity during the summer season, curiously the 579 

season in which there are more limiting conditions. This could be explained by the 580 

NDVI saturation under high levels of leaf area index (Carlson and Ripley, 1997), since 581 
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once the tree tops are completely foliated the electromagnetic signal is not sensitive to 582 

additional leaf growth. This could explain the less sensitive response of the forests to 583 

drought in comparison to land cover types characterised by lower leaf area (e.g. shrubs 584 

or grasslands). Nevertheless, we do not think that this phenomenon can explain totally 585 

the decreased sensitivity to drought with aridity in summer since the dominant 586 

coniferous and broad-leaved forests in Spain are usually not characterised by a 100% 587 

leaf coverage (Castro-Díez et al., 1997; Molina and del Campo, 2012), so large signal 588 

saturation problems are not expected. On the other hand, the ecophysiological strategies 589 

of forests to cope with drought may help explain the observed lower relationship 590 

between aridity during the summer months. Experimental studies suggested that the 591 

interannual variability of the secondary growth could be more sensitive to drought than 592 

the sensitivity observed by the photosyntetic activity and the leaf area (Newberry, 593 

2010). This could be a strategy to optimize the storage of carbohydrates, suggesting that 594 

forests in dry years would prioritize the development of an adequate foliar area in 595 

relation to the wood formation in order to maintain respiration and photosynthetic 596 

processes. Recent studies by Gazol et al. (2018) and Peña-Gallardo et al. (2018b) 597 

confirmed that, irrespective of forest species, there is a higher sensitivity of tree-ring 598 

growth to drought, as compared to the sensitivity of the NDVI. The different spatial and 599 

seasonal responses of vegetation activity to drought in our study domain can also be 600 

linked to the dominant forest species and species richness, which has been evident in 601 

numerous studies (e.g. Lloret et al., 2007). Moreover, this might also be attributed to the 602 

ecosystem physiological processes, given that vegetation tends to maintain the same 603 

water use efficiency under water stress conditions, regardless of vegetation types and 604 

environmental conditions (Huxman et al., 2004). This would explain that -605 

independently of the aridity conditions- the response of the NDVI to drought would be 606 
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similar. Here, we demonstrated that the response of the NDVI to drought is similar 607 

during summer months, even with the different land cover types and environmental 608 

conditions.  609 

A relevant finding of this study is that the response of the NDVI is highly dependent on 610 

the time scale at which drought is quantified. Numerous studies indicated that the 611 

accumulation of precipitation deficits during different time periods is essential to 612 

determine the influence of drought on the NDVI (e.g. Malo and Nicholson, 1990; Liu 613 

and Kogan, 1996; Lotsch et al., 2003; Ji and Peters, 2003; Wang et al., 2003). This is 614 

simply because soil moisture is impacted largely by precipitation and the atmospheric 615 

evaporative demand over previous cumulative periods (Scaini et al., 2015). Moreover, 616 

the different morphological, physiological and phenological strategies would also 617 

explain the varying response of vegetation types to different drought time scales. This 618 

finding is confirmed in previous works using NDVI and different time scales of a 619 

drought index (e.g. Ji and Peters, 2003; Vicente-Serrano, 2007), but also using other 620 

variables like tree-ring growth (e.g. Pasho et al., 2011; Arzac et al., 2016; Vicente-621 

Serrano et al., 2014a). This study confirms this finding, given that there is a high spatial 622 

diversity in the SPEI time scale at which vegetation has its maximum correlation with 623 

the NDVI. These spatial variations, combined with strong seasonal differences, are 624 

mainly controlled by the dominant land cover types and aridity conditions. In their 625 

global assessment, Vicente-Serrano et al. (2013) found gradients in the response of the 626 

world biomes to drought, which are driven mainly by the time scale at which the biome 627 

responds to drought in a gradient of aridity. Again, the response to these different time 628 

scales implies not only different vulnerabilities of vegetation to water deficits, but also 629 

various strategies from plants to cope with drought. In Spain, we showed that the NDVI 630 

responds mostly to the SPEI at time scales around 20 semi-monthly periods (10 631 
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months), but with some few seasonal differences (i.e. shorter time scales in spring and 632 

early autumn than in late summer and autumn). Herein, it is also noteworthy indicating 633 

that there are differences in this response, as a function of land cover types. Overall, 634 

during the periods of highest vegetation activity, the herbaceous land covers (e.g. non-635 

irrigated arable lands and grasslands) respond to shorter SPEI time-scales than other 636 

forest types. This pattern can be seen in the context that herbaceous covers are more 637 

dependent on the weather conditions recorded during short periods. These vegetation 638 

types could not reach deep soil levels, which are driven by climatic conditions during 639 

longer periods (Changnon and Easterling, 1989; Berg et al., 2017). In contrast, the tree 640 

root systems would access to these deeper levels, having the capacity of buffering the 641 

effect of short term droughts, albeit with more vulnerability to long droughts that 642 

ultimately would affect deep soil moisture levels. This pattern has been recently 643 

observed in southeastern Spain when comparing herbaceous crops and vineyards 644 

(Contreras and Hunink, 2015). Recently, Okin et al. (2018) linked the different 645 

responses to drought time scales between scrubs and chaparral herbaceous vegetation in 646 

California to soil water depletion at different levels.  647 

Albeit with these general patterns, we also found some relevant seasonal patterns. For 648 

example, irrigated lands responded to long SPEI time scales (> 15 months) during 649 

summer months, whilst they responded to shorter time scales (<7 months) during spring 650 

and autumn. This behaviour can be linked to water management in these areas. In 651 

specific, during spring months, these areas do not receive irrigation and accordingly 652 

vegetation activity is determined by water stored in the soil. On the contrary, summer 653 

irrigation depends on the water stored in the dense net of reservoirs existing in Spain; 654 

some of them have a multiannual capacity. Water availability in the reservoirs usually 655 

depends on the climate conditions recorded during long periods (one or two years) 656 
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(López-Moreno et al., 2004; Lorenzo-Lacruz et al., 2010), which determine water 657 

availability for irrigation. This explains why vegetation activity in irrigated lands 658 

depends on long time scales of drought. Similarly, vineyards and olive groves respond 659 

to long SPEI time-scales during summer. These cultivations are highly resistant to 660 

drought stress (Quiroga and Iglesias, 2009). However, these adapted cultivations can be 661 

sensitive to severe droughts under extreme summer dryness. In comparison to other 662 

natural vegetation, mixed forests show response to shorter SPEI time scales. This could 663 

be explained by the low resistance of these forest species to water deficits [e.g. the 664 

different fir species located in humid mountain areas, (Camarero et al., 2011; Camarero 665 

et al., 2018)]. 666 

Here, we also showed that climate aridity can partially explain the response of the 667 

NDVI to the different SPEI time scales. In Spain, the range of the mean aridity recorded 668 

by the mean land cover types is much lower than that observed at the global scale for 669 

the world biomes (Vicente-Serrano et al., 2013). This might explain why there are no 670 

clear patterns in the response of the land cover types to the aridity gradients and the 671 

SPEI time scales at which the maximum correlation between the NDVI and SPEI is 672 

found. Nevertheless, we found some seasonal differences between the cold and warm 673 

seasons. In summer, the NDVI responds to longer SPEI time scales, as opposed to the 674 

most humid forests that respond to shorter time scales. This stresses that – in addition to 675 

aridity- the degree of vulnerability to different duration water deficits, which are well-676 

quantified using the drought time scales, may contribute to explaining the spatial 677 

distribution of the main land cover types across Spain given different biophysical 678 

conditions, but also the different strategies of vegetation types to cope with water stress 679 

(Chaves et al., 2003; McDowell et al., 2008), which are strongly variable in complex 680 

Mediterranean ecosystems. 681 
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 1152 

Figure 1: Spatial distribution of the Pearson’s r correlation coefficient calculated 1153 

between the sNDVI and different SPEI time scales for different semi-monthly periods.  1154 
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 1156 

Figure 2: Spatial distribution of the maximum correlation between the sNDVI and the 1157 

SPEI during the different semi-monthly periods. 1158 
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Table 1: Percentage of the total surface area according to the different significance 1160 

categories of Pearson’s r correlations between the sNDVI and SPEI. 1161 

 

Negative 
(p < 0.05) 

Negative 
(p > 0.05) 

Positive 
(p > 0.05) 

Positive 
(p < 0.05) 

1st Jan 0.3 9.8 41.3 48.6 

2nd Jan 0.4 8.7 40.2 50.7 

1st Feb 0.3 7.5 39.9 52.3 

2nd Feb 0.1 7.5 39.0 53.4 

1st Mar 0.2 8.9 41.6 49.4 

2nd Mar 0.2 11.3 38.2 50.3 

1st Apr 0.0 7.6 34.9 57.5 

2nd Apr 0.0 3.4 27.0 69.7 

1st May 0.0 1.6 19.0 79.4 

2nd May 0.0 0.9 14.2 84.9 

1st Jun 0.0 1.2 10.8 88.0 

2nd Jun 0.0 0.5 7.4 92.0 

1st Jul 0.0 0.3 5.3 94.4 

2nd Jul 0.0 0.1 4.5 95.4 

1st Aug 0.0 0.1 5.9 94.1 

2nd Aug 0.0 0.2 10.6 89.2 

1st Sep 0.0 0.6 14.0 85.4 

2nd Sep 0.0 0.4 16.9 82.6 

1st Oct 0.0 1.5 24.5 74.0 

2nd Oct 0.0 1.9 31.1 67.0 

1st Nov 0.0 4.5 35.6 59.8 

2nd Nov 0.0 4.8 41.8 53.4 

1st Dec 0.0 4.4 38.9 56.7 

2nd Dec 0.2 5.9 43.1 50.8 

 1162 
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 1164 

Figure 3: Spatial Average and standard error of the Pearson’s r correlation coefficient 1165 

between the sNDVI and SPEI time series.  1166 
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 1168 

Figure 4: Spatial distribution of the SPEI time scales at which the maximum correlation 1169 

between the sNDVI and SPEI is found for each one of the semi-monthly periods. 1170 
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 1172 

Figure 5: Average and standard error of the SPEI time scale at which the maximum 1173 

Pearson’s r correlation coefficient between the sNDVI and SPEI is found. 1174 
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 1177 

Figure 6: Average and standard error of the Pearson’s r correlation coefficient between 1178 

the sNDVI and SPEI for the different land cover types. 1179 
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 1181 

Figure 7: Average and standard error of the SPEI time scale at which the maximum 1182 

Pearson’s r correlation coefficient was found between the sNDVI and SPEI for the 1183 

different land cover types. 1184 
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Figure 10: Box plots showing the climate aridity values , as a function of the SPEI time 

scales at which the maximum correlation between the sNDVI and SPEI is recorded 
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Figure 11: Box plots showing air temperature values, as a function of the SPEI time 

scales at which the maximum correlation between the sNDVI and SPEI is recorded.  
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Figure 12: Scatterplots showing the relationship between the mean annual aridity and 

the maximum correlation found between the sNDVI and the SPEI in the different land 

cover types analysed in this study. Vertical and horizontal bars represent ¼ of standard 

deviation around the mean values.  
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Figure 13: Scatterplots showing the relationship between the mean annual aridity and 

the SPEI time scale at which the maximum correlation is found between the sNDVI and 

SPEI for the different land cover types. Vertical and horizontal bars represent ¼ of 

standard deviation around the mean values.  
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